Vplyv spôsobu pôrodu na epigenetické zmeny u novorodencov a ich zdravotné následky
Authors:
Zuzana Turcsányiová
; Petra Gašparová
; Zuzana Ballová
; Erik Dosedla
Authors‘ workplace:
Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Safarik University in Košice, Hospital AGEL Košice-Šaca Inc., Slovak Republic
Published in:
Ceska Gynekol 2024; 89(4): 329-334
Category:
doi:
https://doi.org/10.48095/cccg2024329
Overview
V posledných desaťročiach sme zaznamenali výrazný nárast počtu cisárskych rezov. Hoci je pôrod cisárskym rezom život zachraňujúci, je spojený so zvýšeným rizikom nepriaznivých zdravotných následkov u novorodencov, vrátane respiračných a atopických ochorení, obezity, cukrovky a závažných autoimunitných ochorení. Presné mechanizmy, ktoré sú základom týchto spojitostí zostávajú nepochopené; epigenetické modifikácie sa však ukázali ako pravdepodobný molekulárny základ spájajúci perinatálne faktory s budúcou náchylnosťou na ochorenie. Tento prehľad spája súčasnú literatúru a odhaľuje, že spôsob pôrodu môže ovplyvniť epigenetické markery u novorodencov, predovšetkým prostredníctvom zmien globálnej metylácie DNA a génovo špecifických metylačných vzorcov.
Klíčová slova:
cisársky rez – metylácia DNA – epigenetika
Sources
1. Boerma T, Ronsmans C, Melesse DY et al. Global epidemiology of use of and disparities in cesarean sections. Lancet 2018; 392 (10155): 1341–1348. doi: 10.1016/S0140-6736 (18) 31928-7.
2. Betrán AP, Ye J, Moller AB et al. The increasing trend in cesarean section rates: global, regional, and national estimates: 1990–2014. PLoS One 2016; 11 (2): e0148343. doi: 10.1371/journal.pone.0148343.
3. Ghahiri A, Khosravi M. Maternal and neonatal morbidity and mortality rate in cesarean section and vaginal delivery. Adv Biomed Res 2015; 4: 193. doi: 10.4103/2277-9175.166154.
4. Liu S, Liston RM, Joseph KS et al. Maternal Health Study Group of the Canadian Perinatal Surveillance System. Maternal mortality and severe morbidity associated with low-risk planned cesarean delivery versus planned vaginal delivery at term. CMAJ 2007; 176 (4): 455–460. doi: 10.1503/cmaj.060870.
5. Sandall J, Tribe RM, Avery L et al. Short- -term and long-term effects of cesarean section on the health of women and children. Lancet 2018; 392 (10155): 1349–1357. doi: 10.1016/S0140-6736 (18) 31930-5.
6. Kenkel W. Birth signaling hormones and the developmental consequences of cesarean delivery. J Neuroendocrinol 2021; 33 (1): e12912. doi: 10.1111/jne.12912.
7. Tribe RM, Taylor PD, Kelly NM et al. Parturition and the perinatal period: can mode of delivery impact on the future health of the neonate? J Physiol 2018; 596 (23): 5709–5722. doi: 10.1113/JP275429.
8. Black M, Bhattacharya S, Philip S et al. Planned repeat cesarean section at term and adverse childhood health outcomes: a record-linkage study. PLoS Med 2016; 13 (3): e1001973. doi: 10.1371/journal.pmed.1001973.
9. Baumfeld Y, Walfisch A, Wainstock T et al. Elective cesarean delivery at term and the long-term risk for respiratory morbidity for the offspring. Eur J Pediatr 2018; 177 (11): 1653–1659. doi: 10.1007/s00431-018-3225-8.
10. Darabi B, Rahmati S, HafeziAhmadi MR et al. The association between cesarean section and childhood asthma: an updated systematic review and meta-analysis. Allergy Asthma Clin Immunol 2019; 15: 62. doi: 10.1186/s13223- 019-0367-9.
11. Shao Y, Forster SC, Tsaliki E et al. Stunted microbiota and opportunistic pathogen colonization in cesarean-section birth. Nature 2019; 574 (7776): 117–121. doi: 10.1038/s41 586-019-1560-1.
12. Magne F, Puchi Silva A, Carvajal B et al. The elevated rate of cesarean section and its contribution to non-communicable chronic diseases in Latin America: the growing involvement of the microbiota. Front Pediatr 2017; 5: 192. doi: 10.3389/fped.2017.00192.
13. Tamburini S, Shen N, Wu HC et al. The microbiome in early life: implications for health outcomes. Nat Med 2016; 22 (7): 713–722. doi: 10.1038/nm.4142.
14. Gensollen T, Iyer SS, Kasper DL et al. How colonization by microbiota in early life shapes the immune system. Science 2016; 352 (6285): 539–544. doi: 10.1126/science.aad9378.
15. Tanoey J, Gulati A, Patterson C et al. Risk of type 1 diabetes in the offspring born through elective or non-elective cesarean section in comparison to vaginal delivery: a meta-analysis of observational studies. Curr Diab Rep 2019; 19 (11): 124. doi: 10.1007/s11892-019- 1253-z.
16. Bonifacio E, Warncke K, Winkler C et al. Cesarean section and interferon-induced helicase gene polymorphisms combine to increase childhood type 1 diabetes risk. Diabetes 2011; 60 (12): 3300–3306. doi: 10.2337/db11-0729.
17. Andersen V, Möller S, Jensen PB et al. Cesarean section delivery and risk of chronic inflammatory diseases (inflammatory bowel disease, rheumatoid arthritis, coeliac disease, and diabetes mellitus): a population-based registry study of 2,699,479 births in Denmark during 1973–2016. Clin Epidemiol 2020; 12: 287–293. doi: 10.2147/CLEP.S229056.
18. Pistiner M, Gold DR, Abdulkerim H et al. Birth by cesarean section, allergic rhinitis, and allergic sensitization among children with a parental history of atopy. J Allergy Clin Immunol 2008; 122 (2): 274–279. doi: 10.1016/j.jaci.2008. 05.007.
19. Kuhle S, Tong OS, Woolcott CG. Association between cesarean section and childhood obesity: a systematic review and meta-analysis. Obes Rev 2015; 16 (4): 295–303. doi: 10.1111/obr.12267.
20. Chojnacki M, Holscher H, Balbinot A et al. Relations between mode of birth delivery and timing of developmental milestones and adiposity in preadolescence: a retrospective study. Early Hum Dev 2019; 129: 52–59. doi: 10.1016/ j.earlhumdev.2018.12.021.
21. Zhou Y, Zhang Y, Sun Y et al. Association of cesarean birth with body mass index trajectories in adolescence. Int J Environ Res Public Health 2020; 17 (6): 2003. doi: 10.3390/ijerph17062 003.
22. Mueller N, Zhang M, Rifas-Shiman S et al. Mode of delivery, type of labor, and measures of adiposity from childhood to teenage: project Viva. J Obes 2021; 45 (1): 36–44. doi: 10.1038/s41366-020-00709-x.
23. Sitarik A, Havstad S, Johnson C et al. Association between cesarean delivery types and obesity in preadolescence. Int J Obes 2020; 44 (10): 2023–2034. doi: 10.1038/s41366-020-00 663-8.
24. Marcotte EL, Thomopoulos TP, Infante-Rivard C et al. Cesarean delivery and risk of childhood leukemia: a pooled analysis from the Childhood Leukemia International Consortium (CLIC). Lancet Haematol 2016; 3 (4): e176–e185. doi: 10.1016/S2352-3026 (16) 00002-8.
25. Jiang LL, Gao YY, He WB et al. Cesarean section and risk of childhood leukemia: a systematic review and meta-analysis. World J Pediatr 2020; 16 (5): 471–479. doi: 10.1007/s12519- 020-00338-4.
26. Keag OE, Norman JE, Stock SJ. Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: systematic review and meta-analysis. PLoS Med 2018; 15 (1): e1002494. doi: 10.1371/journal.pmed.1002494.
27. Sevelsted A, Stokholm J, Bønnelykke K et al. Cesarean section and chronic immune disorders. Pediatrics 2015; 135 (1): e92–e98. doi: 10.1542/peds.2014-0596.
28. Schlinzig T, Johansson S, Gunnar A et al. Epigenetic modulation at birth – altered DNA-methylation in white blood cells after cesarean section. Acta Paediatr 2009; 98 (7): 1096–1099. doi: 10.1111/j.1651-2227.2009.01371.x.
29. Schlinzig T, Johansson S, Stephansson O et al. Surge of immune cell formation at birth differs by mode of delivery and infant characteristics – a population-based cohort study. PLoS One 2017; 12 (9): e0184748. doi: 10.1371/journal.pone.0184748.
30. Almgren M, Schlinzig T, Gomez-Cabrero D et al. Cesarean delivery and hematopoietic stem cell epigenetics in the newborn infant: implications for future health? Am J Obstet Gynecol 2014; 211 (5): 502.e1–502.e8. doi: 10.1016/ j.ajog.2014.05.014.
31. Słabuszewska-Jóźwiak A, Włodarczyk M, Ciebiera M et al. Placental DNA methylation in cesarean sections – a pilot study. Arch Med Sci 2020. doi: 10.5114/aoms.2020.95422.
32. Franz MB, Poterauer M, Elhenicky M et al. Global and single gene DNA methylation in umbilical cord blood cells after elective cesarean: a pilot study. Eur J Obstet Gynecol Reprod Biol 2014; 179: 121–124. doi: 10.1016/ j.ejogrb.2014.05.038.
33. Chen Q, Ming Y, Gan Y et al. The impact of cesarean delivery on infant DNA methylation. BMC Pregnancy Childbirth 2021; 21 (1): 265. doi: 10.1186/s12884-021-03748-y.
34. Uslu Yuvacı H, Kalaycı A, Aslan MM et al. Evaluation of the effect of delivery mode on methylation changes in the global DNA and the PTEN gene. J Clin Obstet Gynecol 2023; 33 (2): 111–117. doi: 10.5336/jcog.2022- 94979.
35. Boersma GJ, Bale TL, Casanello P et al. Long--term impact of early life events on physiology and behavior. J Neuroendocrinol 2014; 26 (9): 587–602. doi: 10.1111/jne.12153.
36. 1,000 days non-profit organization. 2019 [online]. Available from: https: //thousanddays.org.
37. Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A Clin Mol Teratol 2010; 88 (10): 938–944. doi: 10.1002/bdra.20685.
38. Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 2007; 23 (3): 297–307. doi: 10.1016/j.reprotox.2006.08.012.
39. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8 (4): 253–262. doi: 10.1038/nrg 2045.
40. Virani S, Dolinoy DC, Halubai S et al. Delivery type not associated with global methylation at birth. Clin Epigenetics 2012; 4 (8): 8. doi: 10.1186/1868-7083-4-8.
41. Mi J, Liu F. Rate of cesarean section is alarming in China. Lancet 2014; 383 (9927): 1463–1464. doi: 10.1016/S0140-6736 (14) 60716-9.
42. Radford EJ, Isganaitis E, Jimenez-Chillaron J et al. An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet 2012; 8 (4): e1002605. doi: 10.1371/journal.pgen.1002605.
43. Li Y, Wang XY, Wu T et al. PTEN is involved in modulation of vasculogenesis in early chick embryos. Biol Open 2013; 2 (6): 587–595. doi: 10.1242/bio.20133988.
44. Gupta A, Anjomani-Virmouni S, Koundouros N et al. PARK2 depletion connects energy and oxidative stress to PI3K/Akt activation via PTEN S-nitrosylation. Mol Cell 2017; 65 (6): 999.e7–1013.e7. doi: 10.1016/j.molcel.2017.02.019.
45. Weaver IC, Cervoni N, Champagne FA et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7 (8): 847–854. doi: 10.1038/nn1276.
46. Suarez-Alvarez B, Rodriguez RM, Fraga MF et al. DNA methylation: a promising landscape for immune system-related diseases. Trends Genet 2012; 28 (10): 506–514. doi: 10.1016/j.tig.2012.06.005.
47. Kim J, Bhattacharjee R, Khalyfa A et al. DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med 2012; 185 (3): 330–338. doi: 10.1164/rccm.201106-1026OC.
48. Röhrs S, Scherr M, Romani J et al. CD7 in acute myeloid leukemia: correlation with loss of wild-type CEBPA, consequence of epigenetic regulation. J Hematol Oncol 2010; 3: 15. doi: 10.1186/1756-8722-3-15.
49. Yong AS, Szydlo RM, Goldman JM et al. Molecular profiling of CD34+ cells identifies low expression of CD7, along with high expression of proteinase 3 or elastase, as predictors of longer survival in patients with CML. Blood 2006; 107 (1): 205–212. doi: 10.1182/blood-2005-05- 2155.
50. López-Otín C, Blasco MA, Partridge L et al. The hallmarks of aging. Cell 2013; 153 (6): 1194–1217. doi: 10.1016/j.cell.2013.05.039.
51. Field AE, Robertson NA, Wang T et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 2018; 71 (6): 882–895. doi: 10.1016/j.molcel.2018.08.008.
52. Chavarro JE, Martin-Calvo N, Yuan C et al. Association of birth by cesarean delivery with obesity and type 2 diabetes among adult women. JAMA Netw Open 2020; 3 (4): e202605. doi: 10.1001/jamanetworkopen.2020.2605.
53. Dal‘Maso E, Rodrigues PR, Ferreira G et al. Cesarean birth and risk of obesity from birth to adolescence: a cohort study. Birth 2022; 49 (4): 774–782. doi: 10.1111/birt.12644.
54. Jensen ET, Bertoni AG, Crago OL et al. Cesarean delivery and insulin sensitivity in the older adult: the microbiome and insulin longitudinal evaluation study. J Endocr Soc 2022; 6 (7): bvac072. doi: 10.1210/jendso/ bvac072.
55. Morales E, Vilahur N, Salas LA et al. Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy. Int J Epidemiol 2016; 45 (5): 1644–1655. doi: 10.1093/ije/ dyw196.
56. Fa S, Larsen TV, Bilde K et al. Assessment of global DNA methylation in the first trimester fetal tissues exposed to maternal cigarette smoking. Clin Epigenetics 2016; 8: 128. doi: 10.1186/s13148-016-0296-0.
57. Crute C, Liao Y, Son E et al. Validation of differential DNA methylation in newborns exposed to tobacco smoke during gestation using bisulfite pyrosequencing. MicroPubl Biol 2022; 2022: 10. doi: 10.17912/micropub.biology.000509.
58. Brunst KJ, Tignor N, Just A et al. Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics 2018; 13 (6): 665–681. doi: 10.1080/15592294.2018.1497387.
59. Binder NK, Beard SA, Kaitu’u-Lino TJ et al. Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction 2015; 149 (5): 435–444. doi: 10.1530/REP-14-0676.
Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineArticle was published in
Czech Gynaecology
2024 Issue 4
Most read in this issue
- Movements of the pelvic bones of expectant mothers during vaginal delivery
- Preoperative discrimination between uterine myomas and sarcomas
- Incidence of stress urinary incontinence after laparoscopic sacrocolpopexy
- DNA hypermethylation of tumor suppressor genes TWIST1, GATA4, MUS81 and NTRK1 in endometrial hyperplasia