miRNA profile of luminal breast cancer subtyptes in Slovak women
Authors:
Z. Danková 1; M. Grendár 1; D. Dvorská 1; D. Braný 1; I. Stastny 1; M. Bobrovská 2; T. Balhárek 2; P. Zubor 3
Authors‘ workplace:
Martinské centrum pre biomedicínu, Jesseniova lekárska fakulta v Martine, Univerzita Komenského v Bratislave, Martin, Slovensko
1; Ústav patologickej anatómie, Univerzitná nemocnica Martin, Slovensko
2; Gynekologicko-pôrodnícka klinika, JLF UK a Univerzitná nemocnica Martin, Slovensko
3
Published in:
Ceska Gynekol 2020; 85(3): 174-180
Category:
Overview
Objective: Aberrant expression of short, non-coding RNA molecules (miRNA) leads to breast cancer initiation, progression and metastasing. The miRNA expression level associates with imunohistochemical profile, histopathological parameters, clinical outcomes, prognoses and therapeutical response. The aim of this study was to analyse the whole spectrum of miRNA by microarray method and to define relevant miRNAs describing biological characteristics of luminal breast cancer subtypes.
Design: Cross-sectional study, basic research.
Setting: Biomedical center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
Methods: We analysed 16 tissue samples of Luminal A/B breast cancer types and 16 breast tissue samples without pathological findings. The microarray technology by Agilent was used to analyse 2549 miRNAs by SurePrint G3 Human miRNA kit v.21. The results were assessed by AgiMicroRNA Bioconductor library within Limma pack.
Results: The analyses of the lowest FDR p-value and the highest logFC value selected the oncomiR miR-182 as the most dominant with higher expression in cancer tissues than in normal tissues, followed by miR-21, miR342-3p/5p and miR-6826. The miR-4324 and cluster of miR-99a/let7c/miR-125b dominated in the group of miRNAs with lower expression in cancer tissues compared to normal tissues.
Conclusion: The first results of this study complement biological characteristics of luminal breast cancer subptypes, represent basis for follow-up projects focused on the clarification of relevant signaling pathways and promise new and innovative breast cancer treatment based on the precise, tailored therapy by targeting specific miRNAs involved in the most important carcinogenesis mechanisms.
Keywords:
miRNA – breast cancer – microarray
Sources
1. Amorim, M., Lobo, J., Fontes-Sousa, M., et al. Predictive and prognostic value of selected microRNAs in luminal breast cancer. Front Genet, 2019, 11, 10, p. 815.
2. Bartel, DP. MicroRNA Target recognition and regulatory functions. Cell, 2009, 23, 136(2), p. 215–233.
3. Calin, GA., Dumitru, CD., Shimizu, M., et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002, 99, p. 15524–15529.
4. Dunnwald, LK., Rossing, MA., Li, CI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res, 2007, 9(1), R6.
5. Globocan 2018: https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf.
6. Hayes, J., Peruzzi, PP., Lawler, S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med, 2014, 20(8), p. 460–469.
7. Iorio, MV., Ferracin, M., Liu, CG., et al. MicroRNA geneexpression deregulation in human breast cancer. Cancer Res, 2005, 65, p. 7065–7070.
8. Kurozumi, S., Yamaguchi, Y., Kurosumi, M., et al. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet, 2017, 62(1), p. 15–24.
9. Leoni, G., Tramontano, A. A structural view of microRNA-target recognition. Nucleic Acids Res. 2016, 19:44(9), p. e82.
10. Loh, HY., Norman, BP., Lai, KS., et al. The regulatory role of microRNAs in breast cancer. Int J Mol Sci, 2019, 20(19), p. 4940.
11. Ma, S., Ren, J., Fenyö, D. Breast cancer prognostics using Multi-Omics Data. AMIA Jt Summits Transl Sci Proc, 2016, 20, p. 52–59.
12. MirBase. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0000259
13. Orellana, EA., Kasinski, AL. MicroRNAs in cancer: a historical perspective on the path from discovery to therapy. Cancers (Basel), 2015, 7(3), p. 1388–1405.
14. Price, C., Chen, J. MicroRNAs in cancer biology and therapy: Current status and perspectives. Genes Dis, 2014, 1(2), p. 53–63.
15. Seok, H., Ham, J., Jang, ES., Chi, SW. MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol Cells, 2016, 31, 39(5), p. 375–381.
16. Shams, R., Dianatpour, A., Omrani, MD., Ghafouri-Fard, S. Expression analysis of miR-100 and selected genes from mTOR pathway in breast cancer patients. Meta Gene, 2019, 21, p. 100577.
17. Sharifi, M., Moridnia, A. Apoptosis-inducing and antiproliferative effect by inhibition of miR-182-5p through the regulation of CASP9 expression in human breast cancer. Cancer Gene Ther, 2017, 24(2), p. 75–82.
18. Schooneveld, E., Wildiers, H., Vergote, I., et al. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res, 2015, 17, p. 21.
19. Sohel, MH. Extracellular/circulating microRNAs: release mechanisms, functions and challenges. Achiev Life Sci, 2016, 10, 2, p. 175–186.
20. Søkilde, R., Persson, H., Ehinger, A., et al. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics, 2019, 20, 503, p. 5887–5889.
21. Stefansson, OA., Esteller, M. Epigenetic modifications in breast cancer and their role in personalized medicine. Am J Pathol, 2013, 183(4), p. 1052–1063.
22. Svoronos, AA., Engelman, DM., Slack, FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res, 2016, 1, 76(1), p. 3666–3670.
23. Takahashi, R., Miyazaki, H., Ochiya, T. The roles of microRNAs in breast cancer. Cancers, 2015, 7(2), p. 598–616.
24. Toss, A., Venturelli, M., Peterle, C., et al. Molecular biomarkers for prediction of targeted therapy response in metastatic breast cancer: trick or treat? Int J Mol Sci, 2017, 4, 18(1), p. e85.
25. Truini, A., Coco, S., Nadal, E., et al. Downregulation of miR-99a/let- -7c/miR-125b miRNA cluster predicts clinical outcome in patients with unresected malignant pleural mesothelioma. Oncotarget, 2017, 2, 8(40), p. 68627–68640.
26. Uhr, K., Prager-Vander Smissen, WJC., Heine, AAJ., et al. MicroRNAs as possible indicators of drug sensitivity in breastcancer celllines. Plos One, 2019, 14(5), p. 0216400.
27. Weigelt, B., Geyer, FC., Reis-Filho, S. Histological types of breast cancer: How special are they? Mol Oncol, 2010, 4, 3, p. 192–208.
28. Yan, L., Yu, MC., Gao, GL., et al. MiR-125a-5p functions as a tumour suppressor in breast cancer by downregulating BAP1. J Cell Biochem, 2018, 119(11), p. 8773–8783.
29. Yersal, O., Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol, 2014, 10, 5(3), p. 412–424.
30. Zhao, YS., Yang, WC., Xin, HW., et al. MiR-182-5p knockdown targeting PTEN inhibits cell proliferation and invasion of breast cancer cells. Yonsei Med J, 2019, 60(2), p. 148–157.
Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineArticle was published in
Czech Gynaecology
2020 Issue 3
Most read in this issue
- Native IVF cycle at woman in 46-age with clinical pregnancy
- Prolongated pregnancy: unusual case
- New estrogen-free oral hormonal contraceptive (Estrogene free ill-EFP)
- Dissecting leiomyoma of the uterus with unusual clinical and pathological features