Vascular endothelial growth factor D potential predictor and screening marker in ovarian carcinoma
Authors:
Monika Náležinská
; Josef Chovanec
Authors‘ workplace:
Lékařská fakulta, MU, Brno
; Oddělení gynekologické onkologie, Klinika operační onkologie, MOÚ, Brno
Published in:
Ceska Gynekol 2025; 90(1): 22-37
Category:
Original Article
doi:
https://doi.org/10.48095/cccg202522
Overview
Introduction: Until now, it is still true that late detection of ovarian cancer is a major cause of its poor prognosis. So far, no sufficiently sensitive and specific marker or combination of markers and imaging methods has been identified that would unambiguously allow the detection of early potentially highly-curable stages and furthermore prebioptically differentiate a group of poorly distinguishable benign lesions from malignant tumours on ultrasound. In a retrospective study design, serum levels of vascular endothelial growth factor D (VEGF-D) were investigated. VEGF-D is related to tumour-induced angiogenesis, lymphangiogenesis, and vascular remodelling with the effect of facilitating metastasis and improved oxygen and nutrient distribution into tumour tissue. On the other hand, the lymphatic network serves as a barrier against tumour dissemination and is a transport system for immune-active elements in suppressing tumorigenesis. The aim of this study was to investigate that there is a difference in serum VEGF-D levels in a group of patients with malignant tumours, benign ovarian lesions, and healthy controls without pathological findings in the adnexa. Methods: 162 sera collected preoperatively and preserved by a freezing process in a biobank in 2022–2023 were retrospectively evaluated. The test set was stratified on the basis of histopathological results of the adnexal examination into the malignant tumour group (N = 54), benign lesion group (N = 47), and healthy control group (N = 61). Descriptive statistical analysis methods were used for the statistical evaluation of the parameters. Nonparametric tests were used to compare serum VEGF-D levels. All analyses were considered at a significance level of 5%. Serum VEGF-D was analysed by ELISA Quantikine® Human VEGF D R&D Systems and values were read spectrophotometrically on a TECAN reader. Results: The result of the comparison of descriptive statistical parameters was statistically significant (P = 0.00067) for the difference between serum VEGF-D levels in the set of benign lesions and malignant tumours. Furthermore, there was a statistically significant difference between the values of patients with malignant tumours and healthy controls (P = 0.0008). No statistically significant difference was found between the values of patients with benign lesions and healthy controls (P = 0.4308). Compared to the conventional marker CA125, pathologically elevated serum CA125 levels correlated with low serum VEGF-D levels in patients with malignant tumours. The same concordance was observed in comparison with the HE4 marker: high serum HE4 levels were accompanied by low VEGF-D levels in the group of patients with malignant tumours; moreover, the dot plot clearly stratified the group of patients with malignant tumours from the group of benign lesions and healthy controls. Conclusion: In view of the results obtained, the investigation of serum VEGF-D levels has the potential of a diagnostic test with a contribution to the stratification of the difficult of prebioptically differentiating adnexal tumours.
Keywords:
ovarian carcinoma – gynaecologic oncology – lymphangiogenesis – VEGF-D
Sources
1. Zikán M. Léčba karcinomu ovaria z pohledu gynekologa. In: Karcinom ovaria. 2. vyd. Praha: Framakon Press, spol. s. r. o. 2023: 8–12.
2. SVOD. 2024 [online]. Available from: https: //old.svod.cz/.
3. Buys SS, Partridge E, Black A et al. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 2011; 305 (22): 2295–2303. doi: 10.1001/jama.2011.766.
4. Zhang R, Siu MK, Ngan HY et al. Molecular biomarkers for the early detection of ovarian cancer. Int J Mol Sci 2022; 23 (19): 12041. doi: 10.3390/ijms231912041.
5. Gohagan JK, Prorok PC, Greenwald P et al. The PLCO cancer screening trial: background, goals, organization, operations, results. Rev Recent Clin Trials 2015; 10 (3): 173–180. doi: 10.2174/1574887110666150730123004.
6. Menon U, Gentry-Maharaj A, Burnell M et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 2021; 397 (10290): 2182–2193. doi: 10.1016/S0140-6736 (21) 00731-5.
7. The Lancet. UKCTOCS and the evaluation of screening for ovarian cancer. Lancet 2016; 387 (10022): 918. doi: 10.1016/S0140-6736 (16) 00631-0.
8. Rosenthal AN. Ovarian cancer screening in the high-risk population – the UK Familial Ovarian Cancer Screening Study (UKFOCSS). Int J Gynecol Cancer 2012; 22 Suppl 1: S27–S28. doi: 10.1097/IGC.0b013e318251cc3f.
9. Kurman RJ, Shih IM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol 2016; 186 (4): 733–747. doi: 10.1016/j.ajpath.2015.11.011.
10. Škapa P. Patologie a histopatologická klasifikace karcinomů ovaria. In: Karcinom ovaria. 2. vyd. Praha: Framakon Press, spol. s. r. o. 2023: 12–25.
11. Salazar C, Campbell IG, Gorringe KL. When is “Type I” ovarian cancer not “Type I”? Indications of an out-dated dichotomy. Front Oncol 2018; 8: 654. doi: 10.3389/fonc.2018.00654.
12. Board WC of TE. Female Genital Tumours. 2024 [online]. Available from: https: //publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/Female-Genital-Tumours-2020.
13. Medeiros F, Muto MG, Lee Y et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol 2006; 30 (2): 230–236. doi: 10.1097/01.pas.0000180854.28831.77.
14. Uterine and tubal lavage for earlier cancer detection using an innovative catheter: a feasibility and safety study – PubMed. 2024 [online]. Available from: https: //pubmed.ncbi.nlm.nih.gov/30376484/.
15. Sia TY, Yaari Z, Feiner R et al. Uterine washings as a novel method for early detection of ovarian cancer: trials and tribulations. Gynecol Oncol Rep 2024; 51: 101330. doi: 10.1016/j.gore.2024.101330.
16. Pujade-Lauraine E, Ray-Coquard I, Lécur F. Ovarian Cancers. 1st ed. USA: Springer International Publishing 2017.
17. Masopust J. Klinická biochemie. Požadování a hodnocení biochemických vyšetření. II. část. Praha: Calamarus, s. r. o. 1998.
18. Rosen DG, Zhang Z, Shan W et al. Morphological and molecular basis of ovarian serous carcinoma. J Biomed Res 2010; 24 (4): 257–263. doi: 10.1016/S1674-8301 (10) 60036-X.
19. Anastasi E, Farina A, Granato T et al. Recent insight about HE4 role in ovarian cancer oncogenesis. Int J Mol Sci 2023; 24 (13): 10479. doi: 10.3390/ijms241310479.
20. Kirchhoff C, Habben I, Ivell R et al. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol Reprod 1991; 45 (2): 350–357. doi: 10.1095/biolreprod45.2.350.
21. James NE, Chichester C, Ribeiro JR. Beyond the biomarker: understanding the diverse roles of human epididymis protein 4 in the pathogenesis of epithelial ovarian cancer. Front Oncol 2018; 8: 124. doi: 10.3389/fonc.2018.00124.
22. Hellström I, Raycraft J, Hayden-Ledbetter M et al. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res 2003; 63 (13): 3695–3700.
23. Hamed EO, Ahmed H, Sedeek OB et al. Significance of HE4 estimation in comparison with CA125 in diagnosis of ovarian cancer and assessment of treatment response. Diagn Pathol 2013; 8: 11. doi: 10.1186/1746-1596-8-11.
24. Lycke M, Ulfenborg B, Malchau Lauesgaard J et al. Consideration should be given to smoking, endometriosis, renal function (eGFR) and age when interpreting CA125 and HE4 in ovarian tumor diagnostics. Clin Chem Lab Med 2021; 59 (12): 1954–1962. doi: 10.1515/cclm- 2021-0510.
25. Barr CE, Funston G, Jeevan D et al. The performance of HE4 alone and in combination with CA125 for the detection of ovarian cancer in an enriched primary care population. Cancers (Basel) 2022; 14 (9): 2124. doi: 10.3390/cancers14092124.
26. Cao H, You D, Lan Z et al. Prognostic value of serum and tissue HE4 expression in ovarian cancer: a systematic review with meta-analysis of 90 studies. Expert Rev Mol Diagn 2018; 18 (4): 371–383. doi: 10.1080/14737159.2018.1457436.
27. Plotti F, Terranova C, Guzzo F et al. Role of BRCA mutation and HE4 in predicting chemotherapy response in ovarian cancer: a retrospective pilot study. Biomedicines 2021; 9 (1): 55. doi: 10.3390/biomedicines9010055.
28. James NE, Emerson JB, Borgstadt AD et al. The biomarker HE4 (WFDC2) promotes a pro-angiogenic and immunosuppressive tumor microenvironment via regulation of STAT3 target genes. Sci Rep 2020; 10 (1): 8558. doi: 10.1038/s41598-020-65353-x.
29. Wang H, Liu P, Xu H et al. Early diagonosis of ovarian cancer: serum HE4, CA125 and ROMA model. Am J Transl Res 2021; 13 (12): 14141–14148.
30. Suri A, Perumal V, Ammalli P et al. Diagnostic measures comparison for ovarian malignancy risk in Epithelial ovarian cancer patients: a meta-analysis. Sci Rep 2021; 11 (1): 17308. doi: 10.1038/s41598-021-96552-9.
31. Zhang P, Wang C, Cheng L et al. Comparison of HE4, CA125, and ROMA diagnostic accuracy: a prospective and multicenter study for Chinese women with epithelial ovarian cancer. Medicine (Baltimore) 2015; 94 (52): e2402. doi: 10.1097/MD.0000000000002402.
32. Zhang R, Siu MK, Ngan HY et al. Molecular biomarkers for the early detection of ovarian cancer. Int J Mol Sci 2022; 23 (19): 12041. doi: 10.3390/ijms231912041.
33. Meys EM, Jeelof LS, Achten NM et al. Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods. Ultrasound Obstet Gynecol 2017; 49 (6): 784–792. doi: 10.1002/uog.17225.
34. Minar L, Felsinger M, Cermakova Z et al. Comparison of the Copenhagen Index versus ROMA for the preoperative assessment of women with ovarian tumors. Int J Gynaecol Obstet 2018; 140 (2): 241–246. doi: 10.1002/ijgo.12371.
35. Karlsen MA, Høgdall EV, Christensen IJ et al. A novel diagnostic index combining HE4, CA125 and age may improve triage of women with suspected ovarian cancer – an international multicenter study in women with an ovarian mass. Gynecol Oncol 2015; 138 (3): 640–646. doi: 10.1016/j.ygyno.2015.06.021.
36. Kurosaki A, Hasegawa K, Kato T et al. Serum folate receptor alpha as a biomarker for ovarian cancer: implications for diagnosis, prognosis and predicting its local tumor expression. Int J Cancer 2016; 138 (8): 1994–2002. doi: 10.1002/ijc.29937.
37. Leung F, Dimitromanolakis A, Kobayashi H et al. Folate-receptor 1 (FOLR1) protein is elevated in the serum of ovarian cancer patients. Clin Biochem 2013; 46 (15): 1462–1468. doi: 10.1016/j.clinbiochem.2013.03.010.
38. Anastasi E, Manganaro L, Granato T et al. Is CA72-4 a useful biomarker in differential diagnosis between ovarian endometrioma and epithelial ovarian cancer? Dis Markers 2013; 35 (5): 331–335. doi: 10.1155/2013/984641.
39. Gericke B, Raila J, Sehouli J et al. Microheterogeneity of transthyretin in serum and ascitic fluid of ovarian cancer patients. BMC Cancer 2005; 5: 133. doi: 10.1186/1471-2407-5-133.
40. Kozak KR, Su F, Whitelegge JP et al. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 2005; 5 (17): 4589–4596. doi: 10.1002/pmic.200500093.
41. Zheng X, Chen S, Li L et al. Evaluation of HE4 and TTR for diagnosis of ovarian cancer: comparison with CA-125. J Gynecol Obstet Hum Reprod 2018; 47 (6): 227–230. doi: 10.1016/ j.jogoh.2018.03.010.
42. Gong G, Lin T, Yuan Y. Integrated analysis of gene expression and DNA methylation profiles in ovarian cancer. J Ovarian Res 2020; 13 (1): 30. doi: 10.1186/s13048-020-00632-9.
43. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic wwitch during tumorigenesis. Cell 1996; 86 (3): 353–364. doi: 10.1016/s0092-8674 (00) 80108-7.
44. Slabý O. Molekulární Medicína. 1. vyd. Praha: Galén 2015.
45. Klener P jr., Klener P. Principy systémové protinádorové léčby. 1. vyd. Praha: Grada Publishing s. r. o.; 2013.
46. Cibula D, Henzl M, Živný J. Základy gynekologické endokrinologie. 1. vyd. Praha: Grada Publishing s. r. o. 2022.
47. Liu ZL, Chen HH, Zheng LL et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8 (1): 198. doi: 10.1038/s41392-023-01460-1.
48. Bokhari SM, Hamar P. Vascular Endothelial Growth Factor-D (VEGF-D): an angiogenesis bypass in malignant tumors. Int J Mol Sci 2023; 24 (17): 13317. doi: 10.3390/ijms2417 13317.
49. Kawasaki T, Kitsukawa T, Bekku Y et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999; 126 (21): 4895–4902. doi: 10.1242/dev.126.21.4895.
50. Fruhauf F. Diagnostika ovariálního karcinomu. In: Karcinom ovaria. 2. vyd. Praha: Framakon Press, spol. s. r. o. 2023: 39–53.
51. Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic cleavages in the VEGF family: generating diversity among angiogenic VEGFs, essential for the activation of lymphangiogenic VEGFs. Biology (Basel) 2021; 10 (2): 167. doi: 10.3390/biology10020167.
52. Jha SK, Rauniyar K, Chronowska E et al. KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D. Elife 2019; 8: e44478. doi: 10.7554/eLife. 44478.
53. Chen R, Lee C, Lin X et al. Novel function of VEGF-B as an antioxidant and therapeutic implications. Pharmacol Res 2019; 143: 33–39. doi: 10.1016/j.phrs.2019.03.002.
54. Hirakawa S, Brown LF, Kodama S et al. VEGF-C – induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007; 109 (3): 1010–1017. doi: 10.1182/blood-2006-05-021758.
55. Mattila MM, Ruohola JK, Karpanen T et al. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer 2002; 98 (6): 946–951. doi: 10.1002/ijc.10283.
56. Song E, Mao T, Dong H et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020; 577 (7792): 689–694. doi: 10.1038/s41586-019-1912-x.
57. Ogawa S, Oku A, Sawano A et al. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 1998; 273 (47): 31273–31282. doi: 10.1074/jbc.273.47.31273.
58. Shibuya M. Vascular endothelial growth factor receptor-2: its unique signaling and specific ligand, VEGF-E. Cancer Sci 2003; 94 (9): 751–756. doi: 10.1111/j.1349-7006.2003.tb01514.x.
59. Komori Y, Nikai T, Taniguchi K et al. Vascular endothelial growth factor VEGF-like heparin-binding protein from the venom of Vipera aspis aspis (Aspic viper). Biochemistry 1999; 38 (36): 11796–11803. doi: 10.1021/bi99 0562z.
60. Ferreira IG, Pucca MB, de Oliveira IS et al. Snake venom vascular endothelial growth factors (svVEGFs): unravelling their molecular structure, functions, and research potential. Cytokine Growth Factor Rev 2021; 60: 133–143. doi: 10.1016/j.cytogfr.2021.05.003.
61. De Falco S. The discovery of placenta growth factor and its biological activity. Exp Mol Med 2012; 44 (1): 1–9. doi: 10.3858/emm. 2012.44.1.025.
62. Macarulla T, Montagut C, Sánchez-Martin FJ et al. The role of PIGF blockade in the treatment of colorectal cancer: overcoming the pitfalls. Expert Opin Biol Ther 2020; 20 (1): 15–22. doi: 10.1080/14712598.2020.1677603.
63. Stacker SA, Achen MG. Emerging roles for VEGF-D in human disease. Biomolecules 2018; 8 (1): 1. doi: 10.3390/biom8010001.
64. Tissue expression of VEGFD – Summary – the Human Protein Atlas. 2024 [online]. Available from: https: //www.proteinatlas.org/ENSG00000165197-VEGFD/tissue.
65. Achen MG, Jeltsch M, Kukk E et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 1998; 95 (2): 548–553. doi: 10.1073/pnas. 95.2.548.
66. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 2010; 140 (4): 460–476. doi: 10.1016/ j.cell.2010.01.045.
67. Uhlén M, Fagerberg L, Hallström BM et al. Proteomics. Tissue-based map of the human proteome. Science 2015; 347 (6220): 1260419. doi: 10.1126/science.1260419.
68. Byzova TV, Goldman CK, Jankau J et al. Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 2002; 99 (12): 4434–4442. doi: 10.1182/blood.v99.12.4434.
69. Kärpänen T, Heckman CA, Keskitalo S et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 2006; 20 (9): 1462–1472. doi: 10.1096/fj.05-5646com.
70. Oliver G, Kipnis J, Randolph GJ et al. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 2020; 182 (2): 270–296. doi: 10.1016/j.cell.2020.06.039.
71. Karkkainen MJ, Haiko P, Sainio K et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004; 5 (1): 74–80. doi: 10.1038/ni1013.
72. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005; 438 (7070): 946–953. doi: 10.1038/nature04480.
73. Achen MG, McColl BK, Stacker SA. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 2005; 7 (2): 121–127. doi: 10.1016/j.ccr.2005.01.017.
74. Clavin NW, Avraham T, Fernandez J et al. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 2008; 295 (5): H2113–H2127. doi: 10.1152/ajpheart.00879.2008.
75. Ran S, Wilber A. Novel role of immature myeloid cells in formation of new lymphatic vessels associated with inflammation and tumors. J Leukoc Biol 2017; 102 (2): 253–263. doi: 10.1189/jlb.1MR1016-434RR.
76. Lund AW, Wagner M, Fankhauser M et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest 2016; 126 (9): 3389–3402. doi: 10.1172/JCI79434.
77. Song E, Mao T, Dong H et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020; 577 (7792): 689–694. doi: 10.1038/s41586-019-1912-x.
78. Lee CK, Jeong SH, Jang C et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science 2019; 363 (6427): 644–649. doi: 10.1126/science.aav 0173.
79. Naxerova K, Reiter JG, Brachtel E et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 2017; 357 (6346): 55–60. doi: 10.1126/science.aai8515.
80. Kopfstein L, Veikkola T, Djonov VG et al. Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol 2007; 170 (4): 1348–1361. doi: 10.2353/ajpath.2007.060835.
81. Yonemura Y, Endo Y, Tabata K et al. Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer. Int J Clin Oncol 2005; 10 (5): 318–327. doi: 10.1007/s10147-005-0508-7.
82. Currie MJ, Hanrahan V, Gunningham SP et al. Expression of vascular endothelial growth factor D is associated with hypoxia inducible factor (HIF-1alpha) and the HIF-1alpha target gene DEC1, but not lymph node metastasis in primary human breast carcinomas. J Clin Pathol 2004; 57 (8): 829–834. doi: 10.1136/jcp.2003. 015644.
83. George ML, Tutton MG, Janssen F et al. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 2001; 3 (5): 420–427. doi: 10.1038/sj.neo.7900186.
84. Niki T, Iba S, Tokunou M et al. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res 2000; 6 (6): 2431–2439.
85. Feng Y, Wang W, Hu J et al. Expression of VEGF-C and VEGF-D as significant markers for assessment of lymphangiogenesis and lymph node metastasis in non-small cell lung cancer. Anat Rec (Hoboken) 2010; 293 (5): 802–812. doi: 10.1002/ar.21096.
86. Izawa N, Shitara K, Yonesaka K et al. Early tumor shrinkage and depth of response in the second-line treatment for KRAS exon2 wild- -type metastatic colorectal cancer: an exploratory analysis of the randomized phase 2 trial comparing panitumumab and bevacizumab in combination with FOLFIRI (WJOG6210G). Target Oncol 2020; 15 (5): 623–633. doi: 10.1007/s11523-020-00750-w.
87. Nixon AB, Sibley AB, Liu Y et al. Plasma protein biomarkers in advanced or metastatic colorectal cancer patients receiving chemotherapy with bevacizumab or cetuximab: results from CALGB 80405 (Alliance). Clin Cancer Res 2022; 28 (13): 2779–2788. doi: 10.1158/1078-0432.CCR-21-2389.
ORCID autorky
M. Náležinská 0009-0005-2659-1157
Doručeno/Submitted: 28. 9. 2024
Přijato/Accepted: 30. 10. 2024
MUDr. Monika Náležinská
Oddělení gynekologické onkologie
Klinika operační onkologie
Masarykův onkologický ústav
Žlutý kopec 7
656 53 Brno
monika.nalezinska@mou.cz
Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineArticle was published in
Czech Gynaecology

Most read in this issue
- Diagnosis and treatment of peripartum haemorrhage, consensus of the interdisciplinary working group by the modified ACCORD method
- Sexual function in women with pelvic organ prolapse
- Clinical significance of quantification and immunophenotyping of uterine NK cells in the diagnosis and treatment of infertility
- Infertility stress and coping strategies in women and men undergoing in vitro fertilization treatment